Page not found

Molecular and Cellular Biosciences at Wake Forest University


Wake Forest University Graduate School » Molecular and Cellular Biosciences

Kimberly Nelson, Ph.D.

Kimberly Nelson, Ph.D.
Instructor, Biochemistry
 
Languages

English , French

Education & Training
  BS Furman University 1997
  PhD Duke University 2003
Fellowship
Molecular Biology WFU School of Medicine  
 
Memberships
Society for Free Radical Biology and Medicine
Phi Beta Kappa
American Instit of Chemists

 

Nelson KJ, Parsonage D, Karplus PA, Poole LB. Evaluating peroxiredoxin sensitivity toward inactivation by peroxide substrates. Methods Enzymol. 2013;527():21-40.

 

Poole LB, Nelson KJ, Karplus PA. Sulfenic acids and peroxiredoxins in oxidant defense In: Jakob U, Reichmann D, eds. Oxidative stress and redox regulation. Dordrecht: Springer;2013: 85-118.

 

Keyes JD, Nelson K, Parsonage D, Daniel L, Furdui C, Poole L. Modulation of signaling proteins by reversible cysteine modification [abstract]. FASEB J. 2013;27():993.3.

 

Perkins A, Gretes MC, Nelson KJ, Poole LB, Karplus PA. Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes. Biochemistry. 2012;51(38):7638-7650.

 

Daniel LW, Klomsiri C, Rogers LC, Nelson KJ, Soito L, King SB, Poole LB.Localized hydrogen peroxide-dependent cysteine oxidation is required for lysophosphatidic acid signaling in ovarian and prostate cancer cells [abstract]. Free Radic Biol Med. 2012;53(Suppl 2):S33.

 

Nelson KJ, Parsonage D, Van Swearingen AED, Yuan Y, Salsbury FR, Hall A, Karplus PA, Poole LB. Specific residues in peroxiredoxins promote peroxide reactivity through effects on cysteine pKa, transition state stabilization and oligomerization [abstract]. Free Radic Biol Med. 2012;53(Suppl 2):S151.

 

Poole L, Karplus PA, Nelson K, Parsonage D. Active site and interface communication regulating peroxiredoxin functions [abstract]. Free Radic Biol Med. 2012;53(Suppl 2):S8.

 

Soito L, Williamson C, Knutson ST, Fetrow JS, Poole LB, Nelson KJ. PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family. Nucleic Acids Res. 2011;39(Database issue):D332-7.

 

Nelson KJ, Knutson ST, Soito L, Klomsiri C, Poole LB, Fetrow JS. Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins. 2011;79(3):947-964.

 

Hall A, Nelson K, Poole LB, Karplus PA. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid Redox Signal. 2011;15(3):795-815.

 

 

 

Nelson KJ, Rogers LC, Klomsiri C, Soito L, Poole LB, Daniel LW. Localized hydrogen peroxide-dependent cysteine oxidation is required for lysophosphatidic acid signaling in ovarian and prostate cancer cells [abstract]. Free Radic Biol Med. 2011;51(Suppl 1):S137.

 

Reeves SA, Parsonage D, Nelson KJ, Poole LB. Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin. Biochemistry. 2011;50(41):8970-8981.

 

Parsonage D, Desrosiers DC, Hazlett KRO, Sun Y, Nelson KJ, Cox DL, Radolf JD, Poole LB. Broad specificity AhpC-like peroxiredoxin and its thioredoxin reductant in the sparse antioxidant defense system of Treponema pallidum. Proc Natl Acad Sci U S A. 2010;107(14):6240-6245.

 

Nelson KJ, Klomsiri C, Codreanu SG, Soito L, Liebler DC, Rogers LC, Daniel LW, Poole LB. Use of dimedone-based chemical probes for sulfenic acid detection methods to visualize and identify labeled proteins. Methods Enzymol. 2010;473():95-115.

 

Klomsiri C, Nelson KJ, Bechtold E, Soito L, Johnson LC, Lowther WT, Ryu S-E, King SB, Furdui CM, Poole LB. Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins. Methods Enzymol. 2010;473():77-94.

 

Klomsiri C, Poole LB, Nelson KJ, Rogers L, Klorig EB, Daniel LW, King SB, Furdui CM. Detection and identification of oxidative cysteine modifications in proteins involved in signal transduction pathways [abstract]. Free Radic Biol Med. 2009;47(Suppl 1):S17-S18.

 

Poole LB, Nelson KJ. Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol. 2008;12(1):18-24.

 

 

Nelson KJ, Parsonage D, Hall A, Karplus A, Poole LB. Cysteine pKa values for the bacterial peroxiredoxin AhpC. Biochemistry. 2008;47(48):12860-68.

 

Poole LB, Klomsiri C, Knaggs SA, Furdui CM, Nelson KJ, Thomas MJ, Fetrow JS, Daniel LW, King SB. Fluorescent and affinity-based tools to detect cysteine sulfenic acid formation in proteins. Bioconjug Chem. 2007;18(6):2004-2017.

 

Michalek RD, Nelson KJ, Holbrook BC, Yi JS, Stridiron D, Daniel LW, Fetrow JS, King SB, Poole LB, Grayson JM. The requirement of reversible cysteine sulfenic acid formation for T cell activation and function. J Immunol. 2007;179(10):6456-6467.

 

Klomsiri C, Nelson KJ, Naggs SA, Fetrow JS, King SB, Furdui CM, Poole LB.Cysteine sulfenic acid detection in signal transduction pathways [abstract]. Free Radic Biol Med. 2007;43(Suppl 1):S157.

 

Nelson KJ, Klomsiri C, Rogers RL, Daniel LW, Poole LB. The role of cysteine sulfenic acid formation during NF-kappa B-mediated signaling [abstract]. Free Radic Biol Med. 2007;43(Suppl 1):S156.

 

Parsonage D, Nelson KJ, Day AE, Poole LB. Substrate specificity and chemical characterization of a bacterial peroxiredoxin, AhpC [abstract]. Free Radic Biol Med. 2007;43(Suppl 1):S113.

 

Role of Cysteine oxidation in the regulation of protein function and cell signaling pathways. Functional studies of peroxiredoxins.